工藝方面焊接時(shí)影響產(chǎn)生熱裂紋的工藝因素很多,如接頭形式、工藝規(guī)范、預(yù)熱溫度、結(jié)構(gòu)剛度和工件的夾固條件等都對(duì)焊縫的抗熱裂能力有一定影響。
(1)焊接工藝和規(guī)范。采用大電流、快速焊、單層焊、直線運(yùn)條前進(jìn)等,容易引起焊接應(yīng)力的工藝措施會(huì)促使產(chǎn)生熱裂紋。故在條件允許時(shí),應(yīng)盡量采用小電流、多層焊,以減少熱裂紋的傾向。
焊接結(jié)構(gòu)剛度較大的工件時(shí),常采用預(yù)熱的方法。預(yù)熱一方面可以減少冷卻速度,減緩在冷卻過(guò)程中產(chǎn)生的拉伸應(yīng)力,另一方面也可改善結(jié)晶條件,減少化學(xué)和物理上的不均勻性。預(yù)熱溫度要根據(jù)鋼種的化學(xué)成分和結(jié)構(gòu)剛度的大小而定。鋼種含碳量越高,其他合金元素越多,工作剛度越大,則要求預(yù)熱溫度越高。
(2)焊接次序。同樣的焊接性能材料和焊接規(guī)范,如果焊接次序不同,產(chǎn)生熱裂紋傾向也不同。原因是焊接次序不同產(chǎn)生的焊接應(yīng)力不同。應(yīng)采用合理的焊接次序最大限度地減小焊接應(yīng)力。
焊接中焊接冷裂紋
壓力容器焊接冷裂紋大多發(fā)生在焊接接頭的近縫區(qū),但有時(shí)也可能擴(kuò)展到焊縫中。
冷裂紋有時(shí)在焊后立即出現(xiàn),但有時(shí)要經(jīng)過(guò)幾小時(shí)、幾天、甚至更長(zhǎng)的時(shí)間才出現(xiàn)。這些焊后經(jīng)過(guò)一段時(shí)間才出現(xiàn)的裂紋又叫延遲裂紋。延遲裂紋在制造過(guò)程中可能沒(méi)被發(fā)現(xiàn),而在使用過(guò)程中就可能造成極其嚴(yán)重的后果。所以它比一般裂紋的危害性更大。
冷裂紋從表現(xiàn)形式上看有以下幾種類型:邊界裂紋、焊道下裂紋和根部裂紋。邊界裂紋是從焊縫與母材交界處開(kāi)始,向母材中延伸。焊道下裂紋位于焊道之下的近縫區(qū)中,沒(méi)有發(fā)展到母材表面。根部裂紋起源于焊縫根部缺口形成的應(yīng)力集中處的熱影響區(qū)中,延伸進(jìn)入母材或焊縫。
1、淬火作用
近縫區(qū)或焊縫上所形成的冷裂紋與金屬相變過(guò)程中力學(xué)性能的急劇變化和復(fù)雜的應(yīng)力狀態(tài)有關(guān)。冷裂紋主要發(fā)生在中碳鋼、高碳鋼和高強(qiáng)度鋼中。這類鋼的主要特點(diǎn)是易于淬火,形成脆硬的馬氏體組織。特別是在焊接條件下近縫區(qū)的加熱溫度很高,熔合線附近則在1350℃以上,使奧氏體嚴(yán)重過(guò)熱,晶粒顯著長(zhǎng)大。由金屬學(xué)可知,晶粒粗大的奧氏體更容易淬火,轉(zhuǎn)變?yōu)榇执蟮鸟R氏體組織,使近縫區(qū)金屬性能變壞,特別是塑性下降,脆性增加。這時(shí)在復(fù)雜的焊接應(yīng)力的作用下,就會(huì)發(fā)生冷裂紋。
2、氫的作用
在焊接高溫下,一些含氫的化合物分辨析出原子狀態(tài)的氫,大量的氫溶解于熔池金屬中。隨著熔池溫度的下降,氫在金屬中的溶解度急劇降低。但焊接熔池的冷卻速度很快,氫來(lái)不及逸出而殘留在焊縫金屬中。氫在奧氏體和鐵素體中的溶解度及擴(kuò)散能力也有顯著差別。
通常焊縫金屬的碳當(dāng)量總比母材低一些,因而焊縫在較高溫度下就發(fā)生奧氏體分解,這時(shí)近縫區(qū)還尚未發(fā)生奧氏體轉(zhuǎn)變。由于焊縫金屬中氫的溶解度突然下降,擴(kuò)散能力提高,氫就向近縫區(qū)的奧氏體中擴(kuò)散。這樣就使近縫區(qū)聚集了大量的氫。隨著溫度的下降,近縫區(qū)的奧氏體發(fā)生轉(zhuǎn)變時(shí),溫度已經(jīng)很低,氫的溶解度更低,而且擴(kuò)散能力也已很微弱。于是氫便以氣體狀態(tài)進(jìn)到金屬的細(xì)微孔隙中并造成很大的壓力,使局部金屬產(chǎn)生很大的應(yīng)力,從而形成冷裂紋。
綜上所述,產(chǎn)生冷裂紋的原因有兩個(gè):一個(gè)是金屬的脆化;一個(gè)是焊接應(yīng)力的作用。
(1)焊接工藝和規(guī)范。采用大電流、快速焊、單層焊、直線運(yùn)條前進(jìn)等,容易引起焊接應(yīng)力的工藝措施會(huì)促使產(chǎn)生熱裂紋。故在條件允許時(shí),應(yīng)盡量采用小電流、多層焊,以減少熱裂紋的傾向。
焊接結(jié)構(gòu)剛度較大的工件時(shí),常采用預(yù)熱的方法。預(yù)熱一方面可以減少冷卻速度,減緩在冷卻過(guò)程中產(chǎn)生的拉伸應(yīng)力,另一方面也可改善結(jié)晶條件,減少化學(xué)和物理上的不均勻性。預(yù)熱溫度要根據(jù)鋼種的化學(xué)成分和結(jié)構(gòu)剛度的大小而定。鋼種含碳量越高,其他合金元素越多,工作剛度越大,則要求預(yù)熱溫度越高。
(2)焊接次序。同樣的焊接性能材料和焊接規(guī)范,如果焊接次序不同,產(chǎn)生熱裂紋傾向也不同。原因是焊接次序不同產(chǎn)生的焊接應(yīng)力不同。應(yīng)采用合理的焊接次序最大限度地減小焊接應(yīng)力。
焊接中焊接冷裂紋
壓力容器焊接冷裂紋大多發(fā)生在焊接接頭的近縫區(qū),但有時(shí)也可能擴(kuò)展到焊縫中。
冷裂紋有時(shí)在焊后立即出現(xiàn),但有時(shí)要經(jīng)過(guò)幾小時(shí)、幾天、甚至更長(zhǎng)的時(shí)間才出現(xiàn)。這些焊后經(jīng)過(guò)一段時(shí)間才出現(xiàn)的裂紋又叫延遲裂紋。延遲裂紋在制造過(guò)程中可能沒(méi)被發(fā)現(xiàn),而在使用過(guò)程中就可能造成極其嚴(yán)重的后果。所以它比一般裂紋的危害性更大。
冷裂紋從表現(xiàn)形式上看有以下幾種類型:邊界裂紋、焊道下裂紋和根部裂紋。邊界裂紋是從焊縫與母材交界處開(kāi)始,向母材中延伸。焊道下裂紋位于焊道之下的近縫區(qū)中,沒(méi)有發(fā)展到母材表面。根部裂紋起源于焊縫根部缺口形成的應(yīng)力集中處的熱影響區(qū)中,延伸進(jìn)入母材或焊縫。
1、淬火作用
近縫區(qū)或焊縫上所形成的冷裂紋與金屬相變過(guò)程中力學(xué)性能的急劇變化和復(fù)雜的應(yīng)力狀態(tài)有關(guān)。冷裂紋主要發(fā)生在中碳鋼、高碳鋼和高強(qiáng)度鋼中。這類鋼的主要特點(diǎn)是易于淬火,形成脆硬的馬氏體組織。特別是在焊接條件下近縫區(qū)的加熱溫度很高,熔合線附近則在1350℃以上,使奧氏體嚴(yán)重過(guò)熱,晶粒顯著長(zhǎng)大。由金屬學(xué)可知,晶粒粗大的奧氏體更容易淬火,轉(zhuǎn)變?yōu)榇执蟮鸟R氏體組織,使近縫區(qū)金屬性能變壞,特別是塑性下降,脆性增加。這時(shí)在復(fù)雜的焊接應(yīng)力的作用下,就會(huì)發(fā)生冷裂紋。
2、氫的作用
在焊接高溫下,一些含氫的化合物分辨析出原子狀態(tài)的氫,大量的氫溶解于熔池金屬中。隨著熔池溫度的下降,氫在金屬中的溶解度急劇降低。但焊接熔池的冷卻速度很快,氫來(lái)不及逸出而殘留在焊縫金屬中。氫在奧氏體和鐵素體中的溶解度及擴(kuò)散能力也有顯著差別。
通常焊縫金屬的碳當(dāng)量總比母材低一些,因而焊縫在較高溫度下就發(fā)生奧氏體分解,這時(shí)近縫區(qū)還尚未發(fā)生奧氏體轉(zhuǎn)變。由于焊縫金屬中氫的溶解度突然下降,擴(kuò)散能力提高,氫就向近縫區(qū)的奧氏體中擴(kuò)散。這樣就使近縫區(qū)聚集了大量的氫。隨著溫度的下降,近縫區(qū)的奧氏體發(fā)生轉(zhuǎn)變時(shí),溫度已經(jīng)很低,氫的溶解度更低,而且擴(kuò)散能力也已很微弱。于是氫便以氣體狀態(tài)進(jìn)到金屬的細(xì)微孔隙中并造成很大的壓力,使局部金屬產(chǎn)生很大的應(yīng)力,從而形成冷裂紋。
綜上所述,產(chǎn)生冷裂紋的原因有兩個(gè):一個(gè)是金屬的脆化;一個(gè)是焊接應(yīng)力的作用。